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Abstract 

This paper attempts to study how vector fields in more than two dimensions all arguments are similar, 

also if the field is a gradient field, can compute more integrals with Fundamental Theorem of Line 

Integrals. Line integral is an integral where the function to be integrated is evaluated along a curve. The 

terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, 

although that is typically reserved for line integrals in the complex plane. In qualitative terms, a line integral 

in vector calculus can be thought of as a measure of the total effect of a given tensor field along a given 

curve.  

The line integral over a scalar field (rank 0 tensor) can be interpreted as the area under the field carved 

out by a particular curve. This can be visualized as the surface created by z = f(x,y) and a curve C in the xy 

plane. The line integral of f would be the area of the "curtain" created—when the points of the surface that 

are directly over C are carved out. The path integral formulation of quantum mechanics actually refers not 

to path integrals in this sense but to functional integrals, that is, integrals over a space of paths, of a function 

of a possible path. However, path integrals in the sense of this article are important in quantum mechanics; 

for example, complex contour integration is often used in evaluating probability amplitudes in quantum 

scattering theory. This definition is not very useful by itself for finding exact line integrals. If data is provided, 

then we can use it as a guide for an approximate answer. Fortunately, there is an easier way to find the line 

integral when the curve is given parametrically or as a vector valued function. We will explain how this is 

done for curves in R2R2; the case for R3R3 is similar. If a vector field FF is the gradient of a 

function, F=∇fF=∇f, we say that FF is a conservative vector field. If FF is a conservative force field, then 

the integral for work, ∫CF⋅dr∫CF⋅dr, is in the form required by the Fundamental Theorem of Line Integrals. 

This means that in a conservative force field, the amount of work required to move an object from point aa to 

point bb depends only on those points, not on the path taken between them. 
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Introduction 

A homogeneous vector field is a vector field that has the same value at every point (cf. Figure 26.22). Because 

the interpretation of a vector field is usually dynamic and involves motion, it is not considered appropriate 

to call these vector fields “constant” : To define 

 

where f(x) is a continuous function. (This assumption can be weakened.) In 

other words, F(t) is simply the area under the f(x) curve from a to t. The 

Fundamental Theorem of Calculus states 

 

There is an analogous result for indefinite integrals. Let 

 

Then 

 

The second version of the Fundamental Theorem of Calculus states that 

 

This last formula can also be expressed in terms of an indefinite integral: 

 

where C is a constant. 

 

Objective: 

This paper intends to explore and analyze the Fundamental Theorem for Line Integrals; the line integral 

of the gradient of a function f gives the total change in the value of f from the start of the curve to its end. 

Fundamental Theorem for Line Integrals 

The following result for line integrals is analogous to the Fundamental Theorem of Calculus. 
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Let C be a curve in the xyz space parameterized by the vector function r(t)=<x(t),y(t),z(t)> for a<=t<=b. 

Suppose that f(x,y,z) is a differentiable function whose gradient grad f=<f_x,f_y,f_z> is continuous on C. 

Then 

 

The above result states that the line integral of a vector field derived from a gradient depends only on the 

function f(x,y,z) and on the initial point (x(a),y(a),z(a)) and final point (x(b),y(b),z(b)) and not on the 

particular curve C. Hence, the integral is path independent. (Compare this with an example of a path 

dependent line integral.) 

We have given the result for a function f(x,y,z) of three variables and a curve in 3 dimensional space. The 

above result is valid for functions of any number of variables. To verify the Fundamental Theorem for line 

integrals for the case that C is the top half of the circle x^2+y^2=1 traversed in the counter clockwise direction 

and 

. 

 

A plot of the vector field and C is given above. The initial point is (1,0) and the final point (-1,0). It follows 

that the the value of the integral is 

 

This is an example where f is a function of two variables so we are dealing with a vector field in the xy plane. 

The vector field is 
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We can parameterize the curve C by vector function r(t)=<cos(t),sin(t)> for 0<=t<=pi. On this curve the 

vector field is <sin(t)+1,cos(t)> and r'(t)=<-sin(t),cos(t)>. It follows that 

 

Cleaning this up, we have 

 

Here we have used the identity cos^2(t)-sin^2(t)=cos(2t). 

In this example the gradient function <y+1,x> is continuous at all points in the xy plane. The line integral of 

<y+1,x> from (1,0) to (-1,0) is equal to -2 for any curve joining these two points. 

Conservative Vector Fields 

Recall that a vector field F is conservative if there is a function f such that F=grad f. If we know that a vector 

field is conservative, then we can apply the Fundamental Theorem. The following result gives a test for 

determining if a vector field is conservative. 

If F is a vector field defined in all of xyz space whose component functions have continuous partial 

derivatives and curl F=0, then F is a conservative vector field. 

The above criterion doesn't say how to find the function f. It just says that a function f exists. 

Here is an example: determine if F=<z,2yz,x+y^2> is conservative. 

Notice that each component of F has continuous partial derivatives with respect to x, y, and z. If F=<P,Q,R>, 

then the definition of curl is 

 

A quick calculation shows that indeed curl F=0. 

The above shows that there exists a function f(x,y,z) such that grad f=F=<P,Q,R>. How do we find the 

function f? 

We know that 
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We integrate to determine f. By the Fundamental Theorem of Calculus 

 

In the above integral y and z are treated as constants. We must add a function of G(y,z) because G_x(y,z)=0. 

Doing this calculation, we find 

 

To determine G(y,z) we use the information that f_y=2yz and f_z=x+y^2. We have 

 

This last equation implies 

 

To determine G(y,z) we integrate with respect to y and add a constant function of z: 

 

This means 

 

To find H(z) we differentiate with respect to z: 

 

This last equation implies H'(z)=0. Hence, H(z)=constant. The final result is 

 

Line Integrals with Respect to Arc Length 

Consider the following problem: a piece of string, corresponding to a curve C, lies in the xy-plane. The mass 

per unit length of the string is f(x,y). What is the total mass of the string? 

The formula for the mass is 

 

The integral above is called a line integral of f(x,y) along C. It is also called a line integral with respect to 

arc length. 
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Question: how do we actually evaluate the above integral? The strategy is: (0) parameterize the curve C, (1) 

cut up the curve C into infinitesimal pieces, (2) determine the mass of each infinitesimal piece, (3) integrate 

to determine the total mass. It is assumed that C is piecewise smooth. That is, it is a union of finite number 

of smooth curves. 

Suppose that we can describe the curve by the vector function r(t)=<x(t),y(t)> where a<=t<=b. Consider a 

portion of the curve corresponding to the infinitesimal interval t_0<=t<=t_0+dt. 

 

The arc length of the curve, ds, on this interval is 

 

Hence, the mass of the piece (density times length) is 

 

The total mass of the string is the sum of all the masses of all infinitesimal pieces 

 

The integral on the right is an integral of one variable. 

Line integrals are not restricted to curves in the xy plane. If C is a curve in three dimensions parameterized 

by r(t)=<x(t),y(t),z(t)> with a<=t<=b, then 

http://www.jetir.org/


© 2020 JETIR July 2020, Volume 7, Issue 7                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2007468 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1304 
 

 

Example 

Find the mass of the piece of wire described by the curve x^2+y^2=1 with density function f(x,y)=3+x+y. 

The circle of radius 1 can be parameterized by the vector function r(t)=<cos(t),sin(t)> with 0<=t<=2*pi. We 

have x(t)=cos(t) and y(t)=sin(t), so x'(t)=-sin(t) and y'(t)=cos(t). The mass is given by the formula 

 

The term in the square root is 1, hence we have 

 

Line Integrals with Respect to x, y, and z 

In some applications, such as line integrals of vector fields, the following line integral with respect to x arises: 

 

This is an integral over some curve C in xyz space. It can be converted to integral in one variable. Suppose 

that C can be parameterized by r(t)=<x(t),y(t),z(t)> with a<=t<=b. Then, 

 

There are analogous formulas for integrals with respect to y and z. 

In some applications, integrals with respect to x, y, and z occur in a sum: 

 

If C is a curve in the xy plane and R=0,  it might be possible to evaluate the line integral using Green's 

theorem. 

Using the standard parameterization for C, this last integral becomes 
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Conclusion 

Fundamental Theorem of Line Integrals implies to compute the integral of a derivative f′f′ we need to 

compute the values of ff at the endpoints. Something similar is true for line integrals of a certain form. In the 

vector setting is still "force times distance'', except that "times'' means "dot product''. If the force varies from 

point to point, it is represented by a vector field FF; the displacement vector vv may also change, as an object 

may follow a curving path in two or three dimensions. Suppose that the path of an object is given by a vector 

function r(t)r(t); at any point along the path, the (small) tangent vector r′Δtr′Δt gives an approximation to its 

motion over a short time 
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